2014년 06월 Transplantation of Insulin-Producing Cells Differentiated from Human Periosteum-Derived Progenitor Cells Ameliorate Hyperglycemia in Diabetic Mice

첨부파일

본문

BACKGROUND:
Periosteum-derived progenitor cells (PDPCs) isolated from the adult periosteum can differentiate into several specific cell types. In this study, we examined the characteristics of human PDPCs and insulin-producing cells (IPCs) differentiated from PDPCs and their ability to ameliorate hyperglycemia when transplanted into streptozotocin-induced nonobese diabetic-severe combined immunodeficiency diabetic mice.

METHODS:
Periosteum-derived progenitor cells were isolated from patients, expanded in culture, and subjected to a three-step differentiation protocol to produce IPCs. The expression of immunogenic, pluripotent, and pancreatic markers was examined, and glucose-stimulated insulin release in vitro was also assessed. Insulin-producing cells that differentiated from PDPCs were transplanted under the kidney capsule of streptozotocin-induced diabetic mice, and glucose levels and glucose tolerance were measured.

RESULTS:
We found that PDPCs expressed the mesenchymal stem cell markers CD73, CD90, and CD105 and the pluripotent markers, octamer-binding transcription factor 4 and Nanog, but not sex-determining region Y-box 2 or Rex1. Periosteum-derived progenitor cells expressed human leukocyte antigen-ABC but did not express human leukocyte antigen-DR or the costimulatory molecules CD80 and CD86. Differentiated IPCs expressed pancreatic hormones (insulin, glucagon, somatostatin, and glucose transporter 2), hormone processing, and secretion molecules (prohormone convertase-1 and convertase-2, Kir6.2), and pancreatic transcription factors (neurogenin 3, pancreatic and duodenal homeobox 1, sex-determining region Y-box 17). When IPCs were stimulated with glucose in vitro, insulin secretion was elevated. Transplantation of IPCs under the kidney capsules of diabetic mice improved hyperglycemia and glucose tolerance. Human insulin was detected in the serum and kidney sections of mice transplanted with IPCs differentiated from PDPCs.

CONCLUSION:
These results suggest that IPCs differentiated from PDPCs might be an alternative source of β cells for treating diabetes.

PUBLICATIONS